НОВЫЕ ИССЛЕДОВАНИЯ ЭЛЕМЕНТНОГО СОСТАВА СРЕДНЕВЕКОВОЙ КЕРАМИКИ ВОСТОЧНОЙ ЕВРОПЫ

© 2021 г. В.Ю. Коваль^{1,*}, А.Ю. Дмитриев^{2,**}, В.С. Смирнова^{2,***}, О.Е. Чепурченко^{2,****}, Ю.Г. Филина^{2,*****}, М.В. Булавин^{2,******}

¹Институт археологии РАН, Москва, Россия
²Лаборатория нейтронной физики им. И.М. Франка Объединенного института ядерных исследований, Лубна, Россия

*E-mail: kovaloka@mail.ru

**E-mail: andmitriev@jinr.ru

***E-mail: veronicasm@jinr.ru

****E-mail: yurchenko0907@mail.ru

****E-mail: jgfilina@yandex.ru

*****E-mail: bulavin85@inbox.ru

Поступила в редакцию 27.05.2020 г.

Представлены результаты изучения состава керамики методом нейтронного активационного анализа (с привлечением рентгеновского флуоресцентного анализа). Изучены образцы керамики, изготовленной из сильноожелезненных (красножгущихся) глин, происходивших из памятников археологии, исследованных на территории средневековой Руси (Москва, Рязанская земля), Поволжья (Болгарское и Селитренное городища). Проведено их сравнение с образцами керамики из Византии и других регионов (Кавказ, Средняя Азия). Установлен набор микроэлементов, содержание которых существенно различается в керамике разных районов Восточной Европы и имеет отличия от керамики соседних стран. Кластерный анализ подтвердил наличие заметных различий в микроэлементном составе глиняных масс, из которых изготавливалась средневековая керамика. Полученные результаты позволяют допускать возможность определения происхождения керамики по ее микроэлементному составу, по крайней мере, на уровне крупных территорий. Внутри этих территорий различия в составе керамики пока выявить не удается.

Ключевые слова: археология, средневековая керамика, нейтронный активационный анализ, рентгеновский флуоресцентный анализ.

DOI: 10.31857/S086960630009867-2

В археологии изучение посудной керамики – одно из важнейших направлений, поскольку, начиная с эпохи неолита, именно она составляет основную долю физического объема артефактов, обнаруживаемых при раскопках. Тем не менее до сих пор еще очень мало известно о конкретных местах производства керамической посуды, об источниках глиняного сырья для таких производств. В археологической керамологии на протяжении XX в. чаще всего проводились петрографические исследования, позволявшие понять, из каких пород была составлена формовочная масса сосуда и при какой температуре проводился его обжиг. Инструментальные физико-химические методы служат другими важными средствами получения новых знаний о керамике: широко используются эмиссионный, рентгенофлуоресцентный анализы, рамановская и мёссбауэровская спектроскопии, масс-спектрометрия и иные методы (Tite, 1972; Rice, 1987; Quinn, 2013). Однако чаще всего исследователями решаются достаточно узкие задачи группировки массива керамики, добытой при раскопках: анализируется ограниченное число образцов, притом в разных лабораториях и различными методами. Поэтому, несмотря на постоянное накопление данных, систематизация их практически не проводится. В итоге при огромной массе опубликованных материалов качественный сдвиг в получении убедительных выводов не достигнут. Наконец, нет надежных доказательств того, что естественнонаучными методами можно установить идентичность древней керамики с образцами глины, взятыми из различных месторождений сырья.

В советский период большие успехи достигнуты благодаря применению спектроскопии для изучения формовочных масс и глазурей керамики средневековой Средней Азии (Сайко, 1963; 1969). Изучение элементного состава археологической керамики возобновлено в России только в XXI в.

Одними из первых к нему обратились сотрудники научных организаций Академии наук Татарстана, которые впервые получили данные об элементном составе средневековой керамики не по основным ее составляющим (кремний, алюминий, кальций, железо), а по большому набору элементов, включая те, которые являются микропримесями на уровне долей процентов (Храмченкова, 2014; Бахматова и др., 2017). Проанализировано 85 образцов средневековой керамики XI–XIV вв., произведенной на территории Волжской Булгарии, и 59 образцов глин, отобранных в разных районах Татарстана. Однако задача, поставленная перед исследованием, - поиск значимых различий между средневековой керамикой, происходившей из разных поселений Волжской Булгарии, не была решена: индикаторы сырьевых источников гончарных глин определить не удалось. Было выделено девять групп керамики, но, к сожалению, признаки этих групп не были перечислены, не был даже указан состав выявленных групп (списки образцов, отнесенных к ним), что исключает возможность проверки предложенных выводов. Был использован широкий набор методов исследования (петрографии, дифференциального термомагнитного, рентгенографического, спектрального эмиссионного, дифференциального термического анализов, хроматографии), но полученные в результате их применения выводы не были согласованы друг с другом. Стало ясно, что, во-первых, до суммирования данных нескольких независимых методов, дающих принципиально разные характеристики керамики, следует хорошо отработать использование хотя бы одного такого метода. Во-вторых, сравнение совершенно разнородной по традициям производства (лепной архаичной и круговой высокотехнологичной) керамики следует проводить только после того, как будут тщательно изучены все характеристики каждой из этих мегагрупп. В-третьих, желательно было найти иные методы проведения аналитических исследований, дававшие более высокую точность результата. Наконец, исследования казанских коллег показали, что наиболее важным критерием для различения керамических изделий выступала разница в их микроэлементном составе.

Названным требованиям к аналитическим методам в наибольшей степени отвечает нейтронный активационный анализ (далее НАА), позволяющий получать более точные данные для микроэлементов, входивших в состав керамики. Все исследования проводились в Объединенном

институте ядерных исследований (г. Дубна)1. Надо заметить, что НАА обладает существенным недостатком — в ходе пробоподготовки образец керамики должен быть перемолот в порошок, который после проведения анализа, включающего облучение нейтронами в исследовательской установке реактора ИБР-2 (Bulavin, Kulikov, 2018), становится опасным для человека и не может быть сохранен, но должен утилизироваться вместе с иными радиоактивными отходами. Вероятно, по этой причине НАА не получил широкого распространения за рубежом (Waksman et al., 1994; Laser ablation..., 2005; Archaeometry, 2007). Действительно, таким методом нельзя изучать уникальные музейные образцы, однако он остается одним из самых эффективных для исследований массовой керамики. Впрочем, для изучения методом НАА подходит не любая керамика, а прежде всего та, которая не содержит в себе значительного количества примесей (дробленого камня, навоза животных, раковин моллюсков и т.п.), поскольку отделить эти примеси от глиняного "цемента" крайне сложно. По этой причине для НАА в наибольшей степени подходит керамика развитого средневековья и Нового времени, изготавливавшаяся из глин без искусственных примесей (а зачастую еще и очищенная древними гончарами от природных примесей). И именно керамика Волжской Булгарии XI–XIV вв. из хорошо очищенных глин без посторонних примесей, прошедшая высокотемпературный обжиг, в наибольшей степени годилась для целей нашего исследования. Правда, гончары часто вводили в состав формовочной массы такой керамики небольшое количество навоза домашних животных (Васильева, 1993. С. 110-112), однако объем таких добавок при массовом городском производстве керамики был незначительным.

На первом этапе исследования проанализировано 15 образцов керамики, из которых 12 по внешним признакам принадлежали общебулгарской средневековой керамике, датированной в интервале XII—XIV вв., 2 — обломки поливных сосудов, еще 1 относился к сосуду, произведенному в Болгаре пришлым из Средней Азии населением (группа XIX по Т.А. Хлебниковой). Все результаты анализов опубликованы (Коваль и др., 2019. С. 791—797), а их изучение позволило

 $^{^1}$ В качестве дополнительного (и контрольного) источника данных для макроэлементов и некоторых микроэлементов выполнялся рентгенофлуоресцентный анализ (далее РФА).

Рис. 1. Керамика из раскопок в Болгаре, произведенная в этом же городе (номера образцов соответствуют нумерации в таблице аналитических результатов).

Fig. 1. Pottery from excavations in Bolgar manufactured in the same city (the sample numbers correspond to those in the table of analytical results)

сделать вывод о том, что ни по основным составляющим², ни по редкоземельным элементам (Sc, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Y) существенных различий в имеющейся выборке нет. Различия же в микроэлементном составе на столь небольшом числе образцов достоверно выявить не удавалось. Правда, были замечены различия по ряду

элементов, связанных с технологией изготовления этой керамики. Например, у поливных образцов зафиксировано повышенное содержание свинца и/или меди, входивших в состав глазурей (Коваль и др., 2019. С. 796, 797).

Вывод об однородности состава керамики, произведенной на относительно небольшой территории, был ожидаем. Поэтому на следующем этапе решено расширить рамки исследования, т.е. сравнить керамику Волжской Булгарии с керамикой

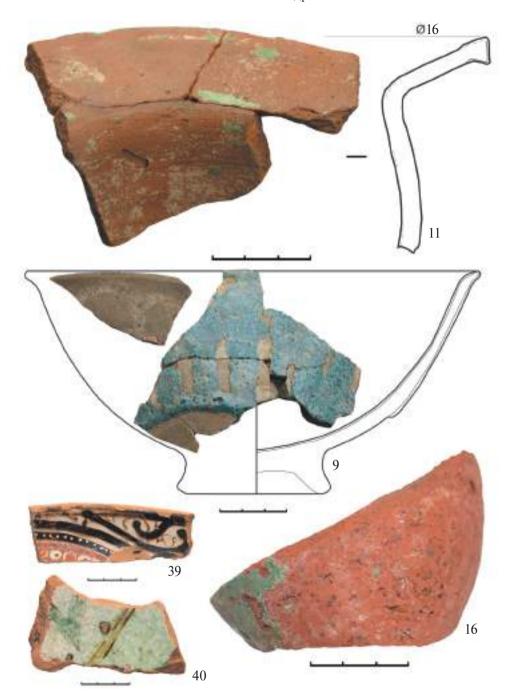
 $^{^2}$ Al, Si, P, K определялись методом РФА; Fe, Na, Ti — методом НАА; Ca, Mn в образцах 1–15 — РФА, в остальных — НАА, что было связано с особенностями эксперимента.



Рис. 2. Керамика (19-22, 36) и образцы обожженной глины (23-25) с Селитренного городища, образец из Болгара (10) и стенка византийской амфоры (44) (номера образцов соответствуют нумерации в таблице аналитических результатов). Fig. 2. Pottery (19-22, 36) and burnt clay samples (23-25) from the Selitrennove fortified settlement, a sample from Bolgar (10) and the wall of a Byzantine amphora (44) (the sample numbers correspond to those in the table of analytical results)

мента" привлечь образцы из более отдаленных стран (Хорезма, Мавераннахра, Ширвана, Византии, Испании). При этом соблюдались два правила: анализируемые образцы должны были быть изготовлены из сильноожелезненной (красножгущейся) глины без видимых посторонних

соседних территорий, а для "чистоты экспери- примесей (исключение сделано только для одного образца из слабоожелезненной глины); они должны быть хронологически близки к посуде Волжской Булгарии, т.е. находиться в пределах XII-XVI вв. (также с единственным исключением, сделанным для обломка среднеазиатского блюда Х в.).



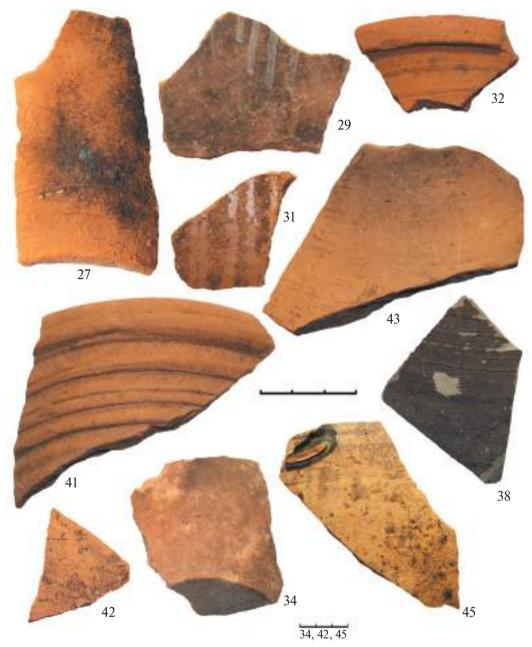

Рис. 3. Поливная керамика из Болгара (9, 11, 16), Афрасиаба (39) и Шемахи (40) (номера образцов соответствуют нумерации в таблице аналитических результатов).

Fig. 3. Glazed pottery from Bolgar (9, 11, 16), Afrasiab (39) and Shamakhi (40) (the sample numbers correspond to those in the table of analytical results)

Состав полученной выборки (45 образцов) включал следующие группы керамических изделий (рис. 1—4). 1). Керамика из раскопок города Болгара, датируемая XII—XIV вв., — 15 шт. (№ 1—9, 11-15, 17)³. 2). Керамика Селитренного городища

(остатки города Сарай XIV в.) (№ 18–25, 35–37), включая 3 образца глин, взятых в районе размещения гончарных горнов (№ 23–25), — всего 11 шт. 3). Керамика неустановленного происхождения, найденная в Болгаре, — 2 шт. (№ 10, 16). 4). Керамика из Никольского городища и селища XII—XIV вв. (Тамбовская обл.), которая по внешним признакам близка к посуде Волжской Булгарии и

³ Номера образцов соответствуют их номерам в таблице, номерам на графиках (рис. 5, 6), номерам изображений на рис. 1-4.

Рис. 4. Керамика из Москвы (27, 29, 31, 32), окрестностей Тамбова (41—43), Хорезма (38), Поочья (34) и Испании (45) (номера образцов соответствуют нумерации в таблице аналитических результатов).

Fig. 4. Pottery from Moscow (27, 29, 31, 32), the vicinity of Tambov (41–43), Khorezm (38), the Oka River region (34) and Spain (45) (the sample numbers correspond to those in the table of analytical results)

Золотой Орды, — 3 шт. (№ 41—43). 5). Керамика Москвы XV—XVI вв. — 8 шт. (№ 26—33). 6). Керамика Среднего Поочья (городище Ростиславль) из слабоожелезненной глины — 1 шт. (№ 34). 7). Керамика отдаленных центров Средней Азии (Хорезм, Афрасиаб) и Закавказья (Шемаха) — 3 шт. (№ 38—41). 8). Византийская керамика (XIV в., стенка амфоры, произведенной, вероятно, в Трапезунде) — 1 шт. (№ 44). 9). Керамика Испании (XIV в., стенка пифоса) из раскопок в Болгаре — 1 шт. (№ 45).

В ходе анализа рассчитывались массовые доли 37 элементов (таблица). Для обработки полученных данных использовался кластерный анализ, выполнявшийся при помощи стандартной программы "Статистика". Вначале он был проведен по всему набору элементов (рис. 5), а также отдельно по основным составляющим глин (Al_2O_3 , SiO_2 , Fe_2O_3 , CaO, MnO, K_2O , Na_2O , P_2O_5 , TiO) и по редкоземельным элементам (Sc, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Y). В каждом из этих случаев получены группы, содержавшие разные

Таблица. Массовые доли элементов и оксидов (мг/кг) в составе изученных образцов (№ 1—45) керамики

Table. Mass fractions of elements and oxides (mg/kg) in the composition of the studied pottery samples (No. 1–45)

Элемент	Na ₂ O	Al_2O_3	SiO ₂	P_2O_5	K ₂ O
Метод	HAA	РФА	РФА	РФА	РФА
1	12800 ± 310	110000 ± 4500	591000 ± 7100	13900 ± 790	21300 ± 320
2	12900 ± 320	107000 ± 4400	638000 ± 7400	2560 ± 470	18700 ± 300
3	9920 ± 240	103000 ± 4400	581000 ± 7000	4790 ± 540	20600 ± 310
4	5840 ± 150	98500 ± 4300	656000 ± 7500	22630 ± 960	18700 ± 300
5	5900 ± 150	86900 ± 4100	620000 ± 7300	16890 ± 850	18800 ± 300
6	11500 ± 290	98700 ± 4200	578000 ± 6900	7890 ± 630	22700 ± 330
7	12800 ± 320	122000 ± 4700	584000 ± 7000	2630 ± 460	20200 ± 310
8	5740 ± 150	96400 ± 4200	621000 ± 7200	5780 ± 570	22400 ± 320
9	22500 ± 550	111000 ± 4500	572000 ± 6900	1480 ± 440	24200 ± 340
10	13100 ± 330	114000 ± 4700	532000 ± 6700	9790 ± 730	23500 ± 340
11	14400 ± 360	103000 ± 4400	571000 ± 6900	2200 ± 460	22800 ± 330
12	11700 ± 300	113000 ± 4500	550000 ± 6800		18200 ± 300
13	16200 ± 410	99400 ± 4300	580000 ± 7000		16600 ± 280
14	15600 ± 400	108000 ± 4500	573000 ± 6900		18500 ± 300
15	12700 ± 330	100000 ± 4300	618000 ± 7200	7760 ± 630	19500 ± 310
16	13900 ± 550	104000 ± 4400	532000 ± 6600	1980 ± 460	22900 ± 330
17	15200 ± 600	92600 ± 4100	535000 ± 6600	1000 ± 380	19400 ± 300
18	18200 ± 720	106000 ± 4400	450000 ± 6000	2650 ± 470	22600 ± 330
19	17100 ± 680	106000 ± 4400	473000 ± 6200	< 3500	21900 ± 320
20	14700 ± 580	110000 ± 4600	539000 ± 6700	< 3210	24100 ± 340
21	17400 ± 690	101000 ± 4300	488000 ± 6300	1760 ± 410	21600 ± 320
22	11900 ± 470	101000 ± 4400	483000 ± 6200	3200 ± 500	21400 ± 320
23	13700 ± 540	110000 ± 4500	492000 ± 6300	< 2470	24100 ± 340
24	19300 ± 760	104000 ± 4400	467000 ± 6100	< 2980	21600 ± 320
25	15200 ± 600	90900 ± 4100	422000 ± 5700	< 2180	20300 ± 310
26	7910 ± 320	97700 ± 4300	564000 ± 6800	4210 ± 540	23900 ± 330
27	7500 ± 300	113000 ± 4500	584000 ± 7000	< 3500	24500 ± 340
28	6010 ± 240	62800 ± 3400	587000 ± 6900	< 1540	15500 ± 270
29	6360 ± 250	108000 ± 4400	518000 ± 6500	2170 ± 420	25300 ± 340
30	6980 ± 280	98900 ± 4300	591000 ± 7000	3710 ± 500	22800 ± 330
31	6130 ± 250	124000 ± 4700	558000 ± 6800	2020 ± 420	27400 ± 360
32	7450 ± 300	125000 ± 4700	539000 ± 6700	1170 ± 380	27200 ± 360
33	6980 ± 280	112000 ± 4500	601000 ± 7100	4810 ± 550	26700 ± 350
34	1940 ± 79	165000 ± 5200	549000 ± 6700	6840 ± 580	16300 ± 280
35	15900 ± 630	117000 ± 4700	496000 ± 6400	3220 ± 510	26300 ± 350
36	13700 ± 550	97700 ± 4300	477000 ± 6200	3730 ± 530	23900 ± 330
37	12600 ± 500	101000 ± 4300	455000 ± 6100	5620 ± 560	23600 ± 340

38	15400 ± 610	98300 ± 4400	548000 ± 6700	3680 ± 580	19700 ± 310
39	10300 ± 410	86700 ± 4200	532000 ± 6500	2690 ± 550	22000 ± 320
40	19300 ± 770	129000 ± 4900	523000 ± 6600	1960 ± 470	12800 ± 260
41	6630 ± 270	102000 ± 4300	632000 ± 7300	10200 ± 690	19900 ± 310
42	12500 ± 500	91500 ± 4100	643000 ± 7400	2090 ± 430	19400 ± 300
43	8090 ± 320	97700 ± 4300	675000 ± 7600	2480 ± 460	23900 ± 330
44	16600 ± 670	129000 ± 4900	451000 ± 6100	10300 ± 700	26200 ± 350
45	4270 ± 180	144000 ± 5100	476000 ± 6300	25300 ± 1000	25400 ± 350

Элемент	CaO	Sc	TiO	Cr	MnO	Fe ₂ O ₃
Метод	РФА/НАА	HAA	РФА	HAA	РФА/НАА	HAA
1	23900 ± 290	16 ± 0.27	5340 ± 330	273 ± 7	1240 ± 83	77900 ± 3600
2	14200 ± 230	16 ± 0.26	5620 ± 340	248 ± 7	1050 ± 75	72300 ± 3300
3	12500 ± 210	15 ± 0.25	5420 ± 320	221 ± 6	646 ± 63	70300 ± 3200
4	17000 ± 250	10 ± 0.16	5110 ± 320	169 ± 5	647 ± 62	46000 ± 2100
5	12700 ± 210	10 ± 0.16	5000 ± 310	161 ± 5	205 ± 43	45200 ± 2100
6	11800 ± 210	12 ± 0.20	5590 ± 330	182 ± 6	773 ± 66	53200 ± 2500
7	11700 ± 210	18 ± 0.29	6170 ± 340	256 ± 7	1420 ± 85	81800 ± 3800
8	11000 ± 200	11 ± 0.18	5780 ± 330	190 ± 6	297 ± 46	53500 ± 2400
9	24300 ± 290	14 ± 0.24	4710 ± 310	178 ± 5	791 ± 67	71000 ± 3300
10	53500 ± 430	17 ± 0.28	5400 ± 330	216 ± 6	1340 ± 84	79500 ± 3700
11	23200 ± 280	15 ± 0.25	5070 ± 320	180 ± 5	842 ± 70	74500 ± 3400
12	12700 ± 220	15 ± 0.25	6020 ± 340	210 ± 7	1530 ± 89	70900 ± 3300
13	10800 ± 200	18 ± 0.31	5640 ± 330	282 ± 8	1380 ± 84	84200 ± 3900
14	11800 ± 210	20 ± 0.33	5730 ± 330	271 ± 7	1280 ± 81	91100 ± 4200
15	11800 ± 210	13 ± 0.22	5580 ± 330	236 ± 6	701 ± 65	64200 ± 3000
16	52900 ± 9290	16 ± 0.27	4730 ± 310	138 ± 4	2890 ± 84	73100 ± 3400
17	19900 ± 3560	16 ± 0.27	5290 ± 310	217 ± 6	2800 ± 82	70200 ± 3200
18	44400 ± 7810	16 ± 0.26	4610 ± 300	163 ± 5	2840 ± 83	70800 ± 3200
19	46700 ± 8380	15 ± 0.26	4590 ± 300	152 ± 4	2850 ± 83	70600 ± 3200
20	45900 ± 8070	15 ± 0.25	5080 ± 320	125 ± 4	2850 ± 83	65600 ± 3000
21	30400 ± 5370	15 ± 0.25	5120 ± 310	140 ± 4	3060 ± 89	70200 ± 3200
22	51100 ± 8970	15 ± 0.26	4690 ± 300	128 ± 4	2980 ± 87	68300 ± 3100
23	26200 ± 4600	12 ± 0.21	4590 ± 300	131 ± 4	2310 ± 67	53200 ± 2400
24	59000 ± 10370	20 ± 0.34	5520 ± 320	183 ± 5	3160 ± 92	83200 ± 3800
25	29100 ± 5110	13 ± 0.23	4010 ± 260	156 ± 4	2140 ± 62	57200 ± 2600
26	41600 ± 7320	13 ± 0.22	5050 ± 310	100 ± 3	2480 ± 72	63500 ± 2900
27	14700 ± 2680	15 ± 0.25	5770 ± 330	112 ± 3	3000 ± 87	76800 ± 3500
28	9000 ± 1620	8 ± 0.14	3660 ± 260	68 ± 2	1680 ± 49	41600 ± 1900
29	16800 ± 2970	12 ± 0.20	5570 ± 320	87 ± 2	2290 ± 66	55900 ± 2600
30	24100 ± 4240	12 ± 0.20	5220 ± 320	90 ± 3	2130 ± 62	53200 ± 2400
31	13200 ± 2350	12 ± 0.21	6420 ± 350	92 ± 3	2440 ± 71	58500 ± 2700
32	6000 ± 1350	14 ± 0.24	6080 ± 340	104 ± 3	3180 ± 92	73800 ± 3400

33	26700 ± 4700	12 ± 0.21	5450 ± 330	93 ± 3	2490 ± 72	57800 ± 2700
34	10300 ± 1830	9 ± 0.15	10300 ± 420	114 ± 3	1020 ± 30	22900 ± 1100
35	37100 ± 6510	14 ± 0.24	5280 ± 320	142 ± 4	2780 ± 80	60900 ± 2800
36	39000 ± 6840	10 ± 0.18	4330 ± 290	138 ± 4	2090 ± 61	45000 ± 2100
37	35300 ± 6220	15 ± 0.25	4800 ± 300	136 ± 4	3190 ± 93	66900 ± 3100
38	90800 ± 15890	12 ± 0.20	3530 ± 280	84 ± 2	2110 ± 61	45300 ± 2100
39	75300 ± 13170	8 ± 0.13	3840 ± 280	105 ± 3	1670 ± 48	34000 ± 1600
40	41800 ± 7330	19 ± 0.32	5290 ± 320	79 ± 2	3290 ± 95	66900 ± 3100
41	14800 ± 2630	9 ± 0.16	5500 ± 330	93 ± 3	1990 ± 58	39000 ± 1800
42	19000 ± 3360	11 ± 0.19	4780 ± 310	131 ± 4	2040 ± 59	46800 ± 2100
43	13800 ± 2450	11 ± 0.18	4930 ± 320	147 ± 4	2180 ± 63	49300 ± 2300
44	34400 ± 6090	17 ± 0.28	5270 ± 320	292 ± 8	3160 ± 92	70600 ± 3200
45	54600 ± 9560	13 ± 0.21	4870 ± 310	96 ± 3	2300 ± 67	50000 ± 2300

Элемент	Ni	Co	Cu	Zn	As	Br	Rb
Метод	HAA	HAA	РФА	HAA	HAA	HAA	HAA
1	79 ± 3.2	23 ± 2	75 ± 10	157 ± 6	8.4 ± 0.8		84 ± 14
2	84 ± 3.2	22 ± 2	42 ± 8	92 ± 3	8.0 ± 0.8		80 ± 13
3	82 ± 6.2	21 ± 2	45 ± 8	96 ± 4	8.3 ± 0.8		73 ± 12
4	54 ± 5.0	12 ± 1	33 ± 7	104 ± 4	3.8 ± 0.4		62 ± 10
5	48 ± 2.1	12 ± 1	40 ± 8	76 ± 3	5.8 ± 0.5		68 ± 11
6	51 ± 2.2	17 ± 1	45 ± 9	118 ± 4	5.4 ± 0.5		84 ± 14
7	96 ± 3.6	25 ± 2	48 ± 9	97 ± 4	12.3 ± 1.2		85 ± 14
8	63 ± 5.6	18 ± 1	37 ± 8	89 ± 3	10.4 ± 1.0		74 ± 12
9	62 ± 2.7	21 ± 2	131 ± 13	101 ± 4	7.2 ± 0.7		88 ± 14
10	114 ± 4.4	26 ± 2	54 ± 10	175 ± 6	6.6 ± 0.6		100 ± 16
11	68 ± 2.9	22 ± 2	83 ± 11	105 ± 4	5.7 ± 0.5		107 ± 18
12	94 ± 3.5	23 ± 2	43 ± 9	87 ± 3	9.5 ± 0.9		80 ± 13
13	108 ± 7.2	27 ± 2	57 ± 10	98 ± 4	10.4 ± 1.0		84 ± 14
14	103 ± 10.3	28 ± 2	48 ± 9	107 ± 4	10.0 ± 1.0		91 ± 15
15	70 ± 6.0	19 ± 1	41 ± 8	95 ± 4	8.8 ± 0.8		81 ± 13
16	75 ± 2.7	20 ± 1	122 ± 13	95 ± 4	7.4 ± 0.9	0.67 ± 0.09	109 ± 18
17	95 ± 3.4	22 ± 2	56 ± 9	86 ± 3	9.1 ± 1.1	1.06 ± 0.12	79 ± 13
18	75 ± 2.8	20 ± 1	41 ± 8	90 ± 4	6.4 ± 0.8	3.76 ± 0.41	90 ± 15
19	74 ± 2.7	20 ± 1	37 ± 8	88 ± 3	6.6 ± 0.8	1.96 ± 0.22	102 ± 17
20	75 ± 2.8	19 ± 1	36 ± 9	93 ± 4	8.0 ± 1.0	0.86 ± 0.11	106 ± 17
21	73 ± 2.7	19 ± 1	54 ± 10	102 ± 5	6.5 ± 0.8	1.56 ± 0.18	107 ± 18
22	77 ± 2.8	18 ± 1	42 ± 9	93 ± 4	8.5 ± 1.1	2.48 ± 0.28	103 ± 17
23	69 ± 2.5	17 ± 1	37 ± 7	71 ± 3	6.4 ± 0.8	1.31 ± 0.15	84 ± 14
24	108 ± 3.9	25 ± 2	49 ± 9	111 ± 4	12.3 ± 1.5	0.88 ± 0.11	98 ± 16
25	60 ± 2.2	18 ± 1	31 ± 8	75 ± 3	6.0 ± 0.7	0.00 ± 0.00	84 ± 14
26	48 ± 1.9	16 ± 1	37 ± 9	90 ± 3	8.0 ± 1.0	3.83 ± 0.43	103 ± 17
27	61 ± 2.3	20 ± 1	39 ± 9	90 ± 4	9.6 ± 1.2	1.68 ± 0.20	117 ± 19

28	31 ± 1.2	11 ± 1	30 ± 8	52 ± 2	6.8 ± 0.8	0.28 ± 0.04	68 ± 11
29	51 ± 1.9	14 ± 1	33 ± 7	77 ± 3	7.4 ± 0.9	0.61 ± 0.07	91 ± 15
30	48 ± 1.8	14 ± 1	33 ± 9	80 ± 3	4.8 ± 0.6	0.69 ± 0.08	88 ± 14
31	48 ± 1.8	16 ± 1	38 ± 8	77 ± 3	9.7 ± 1.2	1.14 ± 0.13	96 ± 16
32	53 ± 2.0	21 ± 2	31 ± 8	90 ± 4	8.9 ± 1.1	0.00 ± 0.00	117 ± 19
33	57 ± 2.1	16 ± 1	31 ± 8	109 ± 4	5.8 ± 0.7	1.31 ± 0.15	98 ± 16
34	48 ± 1.8	8 ± 1	14 ± 6	49 ± 2	5.2 ± 0.6	1.70 ± 0.19	67 ± 11
35	81 ± 3.0	19 ± 1	40 ± 8	83 ± 3	6.8 ± 0.8	2.24 ± 0.25	89 ± 15
36	56 ± 2.1	13 ± 1	48 ± 9	64 ± 2	9.5 ± 1.2	2.87 ± 0.32	74 ± 12
37	84 ± 3.1	19 ± 1	39 ± 8	100 ± 4	4.7 ± 0.6	0.00 ± 0.00	103 ± 17
38	44 ± 1.7	12 ± 1	50 ± 10	66 ± 3	1.4 ± 0.2	0.65 ± 0.08	98 ± 16
39	37 ± 1.4	8 ± 1	38 ± 8	63 ± 2	7.6 ± 0.9	0.91 ± 0.11	77 ± 13
40	47 ± 1.8	20 ± 1	87 ± 11	74 ± 3	6.4 ± 0.8	2.36 ± 0.26	32 ± 5
41	49 ± 1.8	11 ± 1	29 ± 8	60 ± 2	4.7 ± 0.6	2.10 ± 0.23	60 ± 10
42	59 ± 2.2	13 ± 1	36 ± 8	65 ± 2	3.3 ± 0.5	1.72 ± 0.20	73 ± 12
43	50 ± 1.9	11 ± 1	30 ± 8	64 ± 2	5.4 ± 0.7	1.15 ± 0.13	80 ± 13
44	218 ± 7.8	24 ± 2	48 ± 8	105 ± 4	6.6 ± 1.0	0.96 ± 0.18	120 ± 20
45	75 ± 2.8	15 ± 1	100 ± 12	137 ± 5	6.2 ± 0.8	2.33 ± 0.27	110 ± 18

Элемент	Sr	Y	Zr	Sb	Cs	Ba
Метод	HAA	РФА	HAA	HAA	HAA	HAA
1	154 ± 14	19 ± 4	279 ± 7	0.94 ± 0.04	4.33 ± 0.11	478 ± 24
2	132 ± 11	23 ± 4	318 ± 19	0.90 ± 0.03	4.27 ± 0.11	461 ± 23
3	134 ± 13	21 ± 4	287 ± 25	0.88 ± 0.03	2.90 ± 0.08	546 ± 32
4	209 ± 17	20 ± 4	319 ± 21	0.66 ± 0.03	2.05 ± 0.07	601 ± 31
5	200 ± 17	21 ± 4	389 ± 23	0.97 ± 0.04	2.23 ± 0.06	469 ± 26
6	125 ± 13	30 ± 4	397 ± 24	0.75 ± 0.03	3.79 ± 0.12	534 ± 27
7	134 ± 11	27 ± 4	314 ± 23	0.98 ± 0.04	4.69 ± 0.13	469 ± 24
8	128 ± 12	27 ± 4	495 ± 23	0.80 ± 0.03	3.10 ± 0.10	632 ± 32
9	161 ± 14	26 ± 4	223 ± 7	1.08 ± 0.04	4.52 ± 0.12	436 ± 28
10	266 ± 21	27 ± 5	221 ± 24	1.02 ± 0.04	5.86 ± 0.15	487 ± 25
11	185 ± 16	< 30	238 ± 27	1.15 ± 0.05	5.10 ± 0.13	474 ± 29
12	124 ± 10	29 ± 5	268 ± 9	0.95 ± 0.03	4.43 ± 0.12	423 ± 24
13	143 ± 13	28 ± 4	306 ± 8	1.04 ± 0.04	4.73 ± 0.12	491 ± 30
14	140 ± 13	25 ± 4	307 ± 8	1.06 ± 0.04	5.25 ± 0.13	481 ± 26
15	176 ± 16	19 ± 4	356 ± 15	0.74 ± 0.03	3.16 ± 0.10	484 ± 26
16	276 ± 24	22 ± 5	189 ± 5	0.93 ± 0.04	5.35 ± 0.13	412 ± 17
17	176 ± 15	27 ± 5	361 ± 6	0.87 ± 0.04	4.04 ± 0.10	446 ± 19
18	315 ± 27	26 ± 5	241 ± 5	0.56 ± 0.03	3.92 ± 0.10	558 ± 23
19	224 ± 19	27 ± 5	286 ± 6	0.62 ± 0.03	4.62 ± 0.12	425 ± 18
20	247 ± 21	28 ± 5	172 ± 4	0.68 ± 0.03	5.03 ± 0.13	397 ± 17
21	206 ± 18	29 ± 6	207 ± 5	0.58 ± 0.03	4.78 ± 0.12	373 ± 16
22	323 ± 28	26 ± 5	175 ± 4	0.75 ± 0.03	5.24 ± 0.13	450 ± 19

23	152 ± 14	23 ± 4	222 ± 5	0.48 ± 0.02	3.91 ± 0.10	340 ± 14
24	199 ± 17	30 ± 5	229 ± 5	1.14 ± 0.05	5.46 ± 0.14	387 ± 16
25	167 ± 15	28 ± 5	212 ± 5	0.43 ± 0.02	4.01 ± 0.10	365 ± 15
26	114 ± 11	32 ± 5	254 ± 5	0.41 ± 0.02	4.06 ± 0.10	511 ± 21
27	89 ± 9	36 ± 5	277 ± 6	0.53 ± 0.02	4.74 ± 0.12	490 ± 21
28	67 ± 6	22 ± 5	221 ± 4	0.41 ± 0.02	2.54 ± 0.06	313 ± 13
29	92 ± 8	34 ± 5	239 ± 5	0.41 ± 0.02	3.55 ± 0.09	384 ± 16
30	114 ± 10	30 ± 5	249 ± 5	0.53 ± 0.02	3.69 ± 0.09	401 ± 16
31	84 ± 7	31 ± 4	224 ± 5	0.46 ± 0.02	4.06 ± 0.10	420 ± 17
32	95 ± 8	29 ± 5	267 ± 5	0.57 ± 0.03	4.53 ± 0.11	492 ± 21
33	112 ± 10	30 ± 5	235 ± 5	0.41 ± 0.02	3.32 ± 0.08	446 ± 18
34	98 ± 9	22 ± 4	342 ± 6	0.86 ± 0.04	8.46 ± 0.21	223 ± 9
35	274 ± 24	25 ± 5	239 ± 5	0.62 ± 0.03	4.27 ± 0.11	552 ± 23
36	212 ± 18	< 45	190 ± 4	1.13 ± 0.05	3.29 ± 0.08	324 ± 13
37	215 ± 19	28 ± 5	238 ± 5	0.55 ± 0.03	4.73 ± 0.12	390 ± 17
38	262 ± 23	22 ± 5	127 ± 4	0.69 ± 0.03	4.37 ± 0.11	377 ± 15
39	272 ± 24	< 48	182 ± 3	1.33 ± 0.05	4.41 ± 0.11	409 ± 17
40	234 ± 20	18 ± 4	112 ± 4	0.69 ± 0.03	2.01 ± 0.05	252 ± 10
41	148 ± 13	22 ± 4	256 ± 5	0.53 ± 0.02	2.46 ± 0.06	471 ± 19
42	166 ± 14	19 ± 4	200 ± 4	0.49 ± 0.02	3.49 ± 0.09	376 ± 15
43	118 ± 10	23 ± 4	236 ± 5	0.95 ± 0.04	3.86 ± 0.10	387 ± 16
44	170 ± 15	32 ± 5	170 ± 5	1.33 ± 0.05	13.50 ± 0.34	547 ± 23
45	342 ± 30	27 ± 5	137 ± 4	0.76 ± 0.03	6.92 ± 0.17	717 ± 29

Элемент	La	Ce	Nd	Sm	Eu	Tb	Yb
Метод	HAA	HAA	HAA	HAA	HAA	HAA	HAA
1	26 ± 0.8	62 ± 6	< 8	4.9 ± 0.7	0.96 ± 0.02	0.57 ± 0.01	2.1 ± 0.4
2	32 ± 1.0	74 ± 7	27 ± 4	6.7 ± 1.0	1.31 ± 0.02	0.79 ± 0.02	2.7 ± 0.5
3	27 ± 0.8	66 ± 6	19 ± 3	5.3 ± 0.8	1.02 ± 0.03	0.71 ± 0.03	2.2 ± 0.4
4	24 ± 0.8	59 ± 5	< 7	4.9 ± 0.7	0.91 ± 0.02	0.58 ± 0.01	2.1 ± 0.4
5	25 ± 0.8	58 ± 5	23 ± 4	5.2 ± 0.7	0.94 ± 0.02	0.69 ± 0.03	2.2 ± 0.4
6	33 ± 1.0	79 ± 7	31 ± 8	6.5 ± 1.0	1.21 ± 0.03	0.83 ± 0.02	2.8 ± 0.5
7	30 ± 0.9	75 ± 7	29 ± 5	6.4 ± 0.9	1.22 ± 0.02	0.75 ± 0.02	2.7 ± 0.5
8	30 ± 0.9	72 ± 7	25 ± 4	6.3 ± 0.9	1.07 ± 0.02	0.75 ± 0.02	2.7 ± 0.5
9	36 ± 1.1	79 ± 7	26 ± 5	6.3 ± 0.9	1.24 ± 0.03	0.84 ± 0.03	2.0 ± 0.4
10	33 ± 1.0	76 ± 7	< 9	6.7 ± 1.0	1.29 ± 0.03	0.81 ± 0.02	2.7 ± 0.5
11	37 ± 1.2	84 ± 8	31 ± 9	6.7 ± 1.0	1.28 ± 0.03	0.72 ± 0.02	2.3 ± 0.5
12	29 ± 0.9	66 ± 6	27 ± 5	6.3 ± 0.9	1.18 ± 0.02	0.79 ± 0.02	2.3 ± 0.5
13	35 ± 1.1	80 ± 7	26 ± 5	7.5 ± 1.1	1.49 ± 0.04	0.87 ± 0.02	3.0 ± 0.6
14	32 ± 1.0	80 ± 7	20 ± 4	6.3 ± 0.9	1.31 ± 0.03	0.77 ± 0.02	2.7 ± 0.5
15	25 ± 0.8	59 ± 5	< 9	4.4 ± 0.6	0.83 ± 0.02	0.63 ± 0.03	1.9 ± 0.4
16	36 ± 1.2	71 ± 7	34 ± 4	6.7 ± 0.8	1.33 ± 0.03	0.70 ± 0.02	2.5 ± 0.5
17	33 ± 1.1	72 ± 7	31 ± 3	6.9 ± 0.8	1.37 ± 0.04	0.79 ± 0.02	3.2 ± 0.6

$\begin{array}{c} 18 \\ 19 \\ 39 \pm 1.3 \\ 38 \pm 1.2 \\ 20 \\ 35 \pm 1.1 \\ 30 \pm 6.3 \\ 30 \pm 1.3 \\ 30 \pm 1.3 \\ 30 \pm 1.3 \\ 30 \pm 1.3 \\ 30 \pm 4.3 \\ 30 \pm 4.4 \\ 30 \pm 1.4 \\ 30 \pm 0.5 \\ 30 \\ 30 \pm 1.3 \\ 30 \pm 1.1 \\ 30 \pm 0.3 \\ 30 \pm 1.1 \\ 30 \pm 0.3 \\ 30 \pm 1.2 \\ 30 \pm 1.1 \\ 30 \pm 0.3 \\ 30 \pm 1.2 \\ 30 \pm 0.1 \\ 30 \pm 0.3 \\ 30 \pm 0.2 \\ 30 \pm 0.3 \\ 30 \pm 0.2 \\ 30 \pm 0.3 \\ 40 \pm 0.3 \\ 30 \pm 0$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	38 ± 1.2	78 ± 7	31 ± 3	6.8 ± 0.8	1.32 ± 0.03	0.72 ± 0.02	2.5 ± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	39 ± 1.3	80 ± 7	36 ± 4	7.2 ± 0.8	1.44 ± 0.04	0.76 ± 0.02	2.6 ± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	35 ± 1.1	70 ± 6	31 ± 3	6.9 ± 0.8	1.30 ± 0.03	0.72 ± 0.02	2.5 ± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	36 ± 1.2	72 ± 7	34 ± 4	6.8 ± 0.8	1.29 ± 0.03	0.72 ± 0.02	2.4 ± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	35 ± 1.1	67 ± 6	29 ± 3	6.4 ± 0.7	1.25 ± 0.03	0.72 ± 0.02	2.4 ± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	28 ± 1.0	61 ± 6	26 ± 3	5.1 ± 0.6	0.97 ± 0.02	0.56 ± 0.01	2.1 ± 0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	39 ± 1.2	78 ± 7	37 ± 4	7.9 ± 0.9	1.66 ± 0.04	0.86 ± 0.02	3.3 ± 0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	33 ± 1.0	68 ± 6	26 ± 3	5.8 ± 0.7	1.14 ± 0.03	0.57 ± 0.01	2.2 ± 0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	42 ± 1.3	85 ± 8	38 ± 4	8.3 ± 1.0	1.54 ± 0.04	0.88 ± 0.02	3.1 ± 0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	48 ± 1.5	96 ± 9	43 ± 5	9.3 ± 1.1	1.73 ± 0.04	1.02 ± 0.03	3.4 ± 0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	27 ± 0.9	57 ± 5	24 ± 3	5.5 ± 0.7	1.00 ± 0.02	0.60 ± 0.01	2.1 ± 0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	36 ± 1.2	75 ± 7	31 ± 3	7.0 ± 0.9	1.27 ± 0.03	0.75 ± 0.02	2.7 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	34 ± 1.2	74 ± 7	31 ± 3	7.0 ± 0.9	1.28 ± 0.03	0.76 ± 0.02	2.9 ± 0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	34 ± 1.1	76 ± 7	28 ± 3	6.4 ± 0.8	1.18 ± 0.03	0.68 ± 0.02	2.7 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	45 ± 1.5	92 ± 8	40 ± 4	8.2 ± 0.9	1.34 ± 0.03	0.85 ± 0.02	2.8 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	36 ± 1.2	78 ± 7	32 ± 4	7.0 ± 0.9	1.30 ± 0.03	0.75 ± 0.02	2.9 ± 0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	21 ± 0.7	39 ± 4	12 ± 1	2.8 ± 0.4	0.48 ± 0.01	0.43 ± 0.01	2.4 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35	33 ± 1.1	71 ± 7	28 ± 3	6.3 ± 0.8	1.15 ± 0.03	0.67 ± 0.02	2.5 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	24 ± 0.8	51 ± 5	21 ± 2	4.7 ± 0.6	0.85 ± 0.02	0.52 ± 0.01	1.8 ± 0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	36 ± 1.2	71 ± 7	29 ± 3	6.7 ± 0.8	1.24 ± 0.03	0.72 ± 0.02	2.4 ± 0.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	22 ± 0.7	46 ± 4	18 ± 2	4.4 ± 0.6	0.83 ± 0.02	0.50 ± 0.01	2.0 ± 0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	25 ± 0.9	47 ± 4	21 ± 2	4.8 ± 0.6	0.84 ± 0.02	0.59 ± 0.01	1.9 ± 0.4
42 24 ± 0.8 51 ± 5 21 ± 2 4.8 ± 0.6 0.93 ± 0.02 0.54 ± 0.01 2.2 ± 0.4 43 27 ± 0.9 60 ± 5 25 ± 3 5.6 ± 0.7 1.09 ± 0.03 0.61 ± 0.02 2.3 ± 0.5 44 33 ± 1.1 65 ± 6 30 ± 3 6.7 ± 0.8 1.20 ± 0.03 0.78 ± 0.02 2.7 ± 0.5	40	14 ± 0.5	29 ± 3	14 ± 2	3.5 ± 0.4	0.82 ± 0.02	0.44 ± 0.01	2.0 ± 0.4
43 27 ± 0.9 60 ± 5 25 ± 3 5.6 ± 0.7 1.09 ± 0.03 0.61 ± 0.02 2.3 ± 0.5 44 33 ± 1.1 65 ± 6 30 ± 3 6.7 ± 0.8 1.20 ± 0.03 0.78 ± 0.02 2.7 ± 0.5	41	23 ± 0.8	50 ± 5	20 ± 2	4.7 ± 0.6	0.82 ± 0.02	0.54 ± 0.01	2.2 ± 0.4
44 33 ± 1.1 65 ± 6 30 ± 3 6.7 ± 0.8 1.20 ± 0.03 0.78 ± 0.02 2.7 ± 0.5	42	24 ± 0.8	51 ± 5	21 ± 2	4.8 ± 0.6	0.93 ± 0.02	0.54 ± 0.01	2.2 ± 0.4
	43	27 ± 0.9	60 ± 5	25 ± 3	5.6 ± 0.7	1.09 ± 0.03	0.61 ± 0.02	2.3 ± 0.5
45 28 ± 1.0 61 ± 6 24 ± 3 5.2 ± 0.7 0.93 ± 0.02 0.51 ± 0.01 2.2 ± 0.4	44	33 ± 1.1	65 ± 6	30 ± 3	6.7 ± 0.8	1.20 ± 0.03	0.78 ± 0.02	2.7 ± 0.5
	45	28 ± 1.0	61 ± 6	24 ± 3	5.2 ± 0.7	0.93 ± 0.02	0.51 ± 0.01	2.2 ± 0.4

Элемент	Lu	Hf	Та	Hg	Th	U
Метод	HAA	HAA	HAA	HAA	HAA	HAA
1	0.38 ± 0.04	14.4 ± 1.1	0.73 ± 0.02	< 0.068	8.9 ± 0.2	1.8 ± 0.1
2	0.47 ± 0.05	14.9 ± 1.1	0.78 ± 0.02	< 0.038	9.4 ± 0.2	1.9 ± 0.1
3	0.39 ± 0.04	13.6 ± 1.0	0.73 ± 0.02	< 0.072	8.6 ± 0.2	1.7 ± 0.1
4	0.37 ± 0.04	14.7 ± 1.1	0.67 ± 0.02	< 0.068	7.5 ± 0.2	1.5 ± 0.1
5	0.44 ± 0.05	17.2 ± 1.3	0.76 ± 0.02	< 0.069	7.9 ± 0.2	1.6 ± 0.1
6	0.48 ± 0.05	18.3 ± 1.4	0.91 ± 0.03	< 0.072	10.2 ± 0.2	2.1 ± 0.1
7	0.45 ± 0.05	14.1 ± 1.1	0.81 ± 0.02	< 0.037	9.7 ± 0.2	2.0 ± 0.1
8	0.46 ± 0.06	21.2 ± 1.6	0.91 ± 0.03	< 0.070	9.6 ± 0.2	2.0 ± 0.1
9	0.37 ± 0.04	10.8 ± 0.8	0.72 ± 0.02	< 0.076	10.6 ± 0.2	2.1 ± 0.1
10	0.44 ± 0.05	10.0 ± 0.8	0.83 ± 0.02	< 0.075	10.7 ± 0.2	2.4 ± 0.1
11	0.36 ± 0.04	11.1 ± 0.9	0.77 ± 0.02	< 0.074	11.4 ± 0.2	2.8 ± 0.1
12	0.40 ± 0.04	11.8 ± 0.9	0.75 ± 0.02	0.52 ± 0.09	9.0 ± 0.2	2.1 ± 0.1

13	0.59 ± 0.06	15.8 ± 1.2	0.85 ± 0.02	< 0.074	9.9 ± 0.2	2.2 ± 0.1
14	0.53 ± 0.06	14.3 ± 1.1	0.87 ± 0.02	< 0.074	10.6 ± 0.2	2.3 ± 0.1
15	0.34 ± 0.04	15.3 ± 1.2	0.72 ± 0.02	< 0.075	8.4 ± 0.2	1.9 ± 0.1
16	0.33 ± 0.02	8.0 ± 0.6	0.76 ± 0.02	0.39 ± 0.02	10.3 ± 0.2	2.8 ± 0.1
17	0.54 ± 0.03	15.6 ± 1.2	0.81 ± 0.02	0.80 ± 0.05	9.6 ± 0.2	2.2 ± 0.1
18	0.34 ± 0.02	10.5 ± 0.8	0.80 ± 0.02	0.54 ± 0.03	11.0 ± 0.2	3.2 ± 0.1
19	0.39 ± 0.03	12.2 ± 0.9	0.77 ± 0.02	0.67 ± 0.04	11.3 ± 0.2	3.2 ± 0.1
20	0.34 ± 0.02	7.7 ± 0.6	0.80 ± 0.02	0.46 ± 0.03	10.3 ± 0.2	3.2 ± 0.1
21	0.33 ± 0.02	8.6 ± 0.6	0.74 ± 0.01	0.52 ± 0.03	10.9 ± 0.2	3.0 ± 0.1
22	0.31 ± 0.02	7.2 ± 0.5	0.75 ± 0.02	0.44 ± 0.03	10.1 ± 0.2	3.3 ± 0.1
23	0.48 ± 0.03	8.6 ± 0.6	0.62 ± 0.01	0.51 ± 0.03	9.0 ± 0.2	2.8 ± 0.1
24	0.49 ± 0.03	10.2 ± 0.8	0.89 ± 0.02	0.69 ± 0.04	10.5 ± 0.2	2.7 ± 0.1
25	0.33 ± 0.02	9.6 ± 0.7	0.97 ± 0.02	0.61 ± 0.04	9.6 ± 0.2	2.2 ± 0.1
26	0.51 ± 0.03	11.5 ± 0.9	0.91 ± 0.02	0.83 ± 0.05	11.2 ± 0.2	2.2 ± 0.1
27	0.63 ± 0.04	12.7 ± 0.9	1.00 ± 0.02	0.98 ± 0.06	12.9 ± 0.3	2.2 ± 0.1
28	0.39 ± 0.02	9.8 ± 0.7	0.62 ± 0.01	0.76 ± 0.05	7.9 ± 0.2	1.7 ± 0.1
29	0.45 ± 0.03	10.7 ± 0.8	0.85 ± 0.02	0.81 ± 0.05	10.6 ± 0.2	1.9 ± 0.1
30	0.46 ± 0.03	10.5 ± 0.8	0.86 ± 0.02	0.81 ± 0.05	10.2 ± 0.2	1.9 ± 0.1
31	0.44 ± 0.03	9.7 ± 0.7	0.89 ± 0.02	0.79 ± 0.05	10.5 ± 0.2	2.1 ± 0.1
32	0.46 ± 0.03	11.5 ± 0.9	1.00 ± 0.02	1.05 ± 0.07	14.2 ± 0.3	2.5 ± 0.1
33	0.44 ± 0.03	10.2 ± 0.8	0.92 ± 0.02	0.89 ± 0.06	10.9 ± 0.2	2.1 ± 0.1
34	0.29 ± 0.02	14.9 ± 1.1	1.57 ± 0.03	1.49 ± 0.10	10.4 ± 0.2	3.0 ± 0.1
35	0.35 ± 0.02	9.8 ± 0.7	0.76 ± 0.02	0.97 ± 0.06	10.5 ± 0.2	2.7 ± 0.1
36	0.21 ± 0.01	8.0 ± 0.6	0.57 ± 0.01	0.85 ± 0.05	7.7 ± 0.2	1.9 ± 0.1
37	0.32 ± 0.02	9.6 ± 0.7	0.74 ± 0.01	1.14 ± 0.07	11.0 ± 0.2	2.4 ± 0.1
38	0.14 ± 0.01	5.2 ± 0.4	0.60 ± 0.01	0.57 ± 0.04	9.0 ± 0.2	3.4 ± 0.1
39	0.18 ± 0.01	7.4 ± 0.6	0.64 ± 0.01	0.97 ± 0.06	8.4 ± 0.2	3.5 ± 0.1
40	0.20 ± 0.01	4.4 ± 0.3	0.37 ± 0.01	0.57 ± 0.04	3.8 ± 0.1	1.1 ± 0.0
41	0.32 ± 0.02	10.5 ± 0.8	0.73 ± 0.01	1.42 ± 0.09	8.0 ± 0.2	1.9 ± 0.1
42	0.35 ± 0.02	8.6 ± 0.6	0.60 ± 0.01	1.22 ± 0.08	7.6 ± 0.2	1.9 ± 0.1
43	0.38 ± 0.02	10.1 ± 0.8	0.71 ± 0.01	1.49 ± 0.10	8.0 ± 0.2	1.9 ± 0.1
44	0.45 ± 0.03	7.6 ± 0.6	0.88 ± 0.02	1.49 ± 0.10	13.3 ± 0.3	3.7 ± 0.1
45	0.25 ± 0.02	5.8 ± 0.4	0.78 ± 0.02	1.05 ± 0.07	10.9 ± 0.2	2.4 ± 0.1
					•	

наборы образцов, происходивших из различных мест. Разнородность полученных групп можно объяснять широкой вариативностью значений массовых долей элементов, участвовавших в анализе. После этого проведен кластерный анализ по 18 микроэлементам, из них 17 определялись методом НАА (Cr, Ni, Co, Zn, As, Br, Rb, Sr, Zr, Sb, Cs, Ba, Hf, Ta, Hg, Th, U) и 1 — методом РФА (Cu). В результате выявлены группы, объединявшие образцы, происходившие с разных территорий (рис. 6). В целом можно говорить о трех больших

группах керамики, две из которых были достаточно гомогенны и четко отграничивались друг от друга, при том, что внутри каждой из них имелись некоторые различия.

Керамика, происходившая из Болгара, занимает правую часть дендрограммы. Здесь присутствуют образцы, происходившие из разновременных комплексов, от домонгольских до позднезолотоордынских, с разными оттенками цвета черепка. Небольшие размеры выборки не позволяют пока высказывать обоснованных предположений

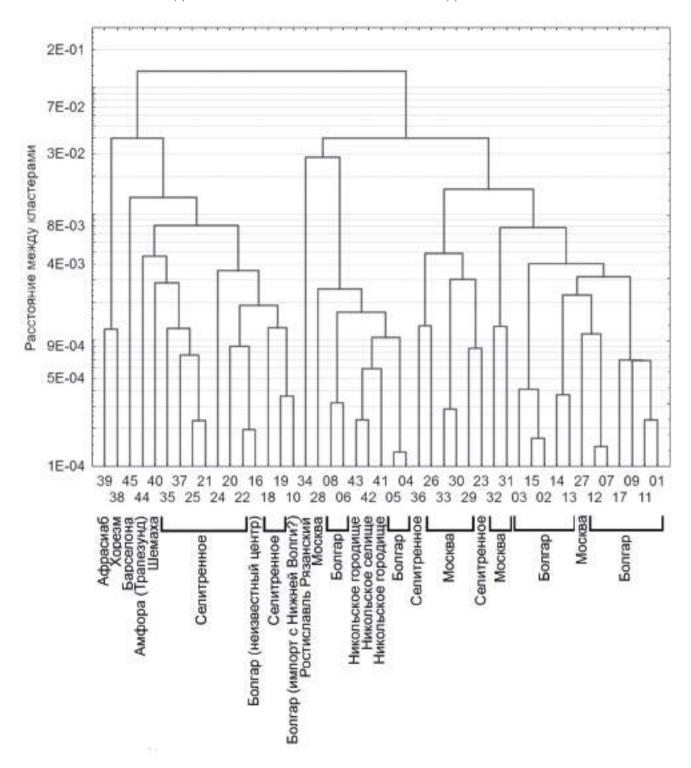


Рис. 5. Дендрограмма кластерного анализа по всему составу определявшихся элементов.

Fig. 5. Dendrogram of cluster analysis for the entire composition of the elements to be determined

о делении этого массива на хронологические или иные подгруппы, хотя само наличие таких подгрупп очевидно.

сколько важных моментов. Во-первых, в "бол- бенно интересно, поскольку до сего времени

гарскую" группу попали два образца поливной керамики - обломок тувака, покрытого зеленой свинцовой глазурью (№ 11), и обломок чаши Необходимо обратить внимание еще на не- с бирюзовой щелочной глазурью (№ 9). Это осо-

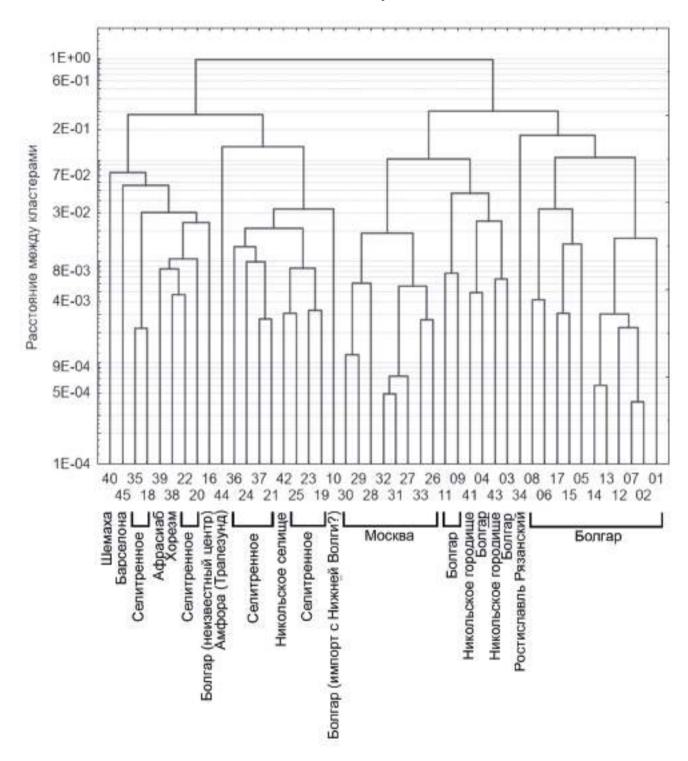


Рис. 6. Дендрограмма кластерного анализа по содержанию микроэлементов (за исключением редкоземельных элементов). Fig. 6. Dendrogram of cluster analysis for the content of trace elements (with the exception of rare earth elements)

ритории Волжской Булгарии производилась лишь в домонгольское время, а после разорения монголами это производство не восстановилось. Полученные данные позволяют допускать, что изготовление глазурованной посуды все же появилось

считалось, что глазурованная керамика на тер- тут в XIV в. (оба образца происходили из слоев позднезолотоордынского времени). Кроме того, данные образцы занимают периферийную зону ареала болгарских образцов, что оставляет возможным происхождение их из иного региона, очень близкого к болгарскому.

Один обломок неполивного краснолощеного сосуда из Болгара изначально вызывал сомнения в его местном производстве, поскольку его внешняя поверхность была покрыта слоем светлого ангоба (№ 10), что не характерно для керамики Болгара. По результатам кластерного анализа этот образец оказался близким к изделиям Селитренного городища.

Наконец, важным представляется то обстоятельство, что единственный проанализированный образец керамики группы XIX (по Т.А. Хлебниковой) (№ 15) не имел никаких микроэлементных отличий от остальной керамики Болгара. Керамика группы XIX производилась по традициям среднеазиатского населения, появившегося в Болгаре в XIV в. (Хлебникова, 1988. С. 47, 48). То, что эти пришельцы изготавливали посуду в самом Болгаре (или где-то рядом с ним), предполагалось и раньше.

Керамика Москвы XV—XVI вв. составила гомогенную подгруппу, близкую к керамике Болгара, но все же четко отделяющуюся от нее. Она включала образцы как кухонной посуды, так и краснолощеных столовых кувшинов и тарных корчаг, производство которых, как полагают, было начато в конце XIV в. при участии приезжих гончаров из Волжской Булгарии.

Вторая большая микроэлементная группа охватывает значительную часть образцов керамики, собранной на Селитренном городище, а также три образца покровных суглинков из разных частей этого памятника, ассоциируемого со столичным центром Золотой Орды XIII-XV вв. - городом Сарай ал-Махруса. Четкое отделение керамики Сарая от керамики Болгара впервые дает в руки исследователей надежный инструмент для различения массовых керамических изделий этих двух крупнейших центров гончарного производства в Поволжье. Дело в том, что, несмотря на некоторые различия в облике болгарской и сарайской красноглиняной керамики, они все же имеют высокую степень сходства и достоверно отличить одну от другой удается не всегда.

Надо указать, что пока исследованы только образцы керамики с Селитренного городища, но не привлечен материал из других золотоордынских городов Нижневолжского региона (городищ Царевское, Водянское, Мошаик, Самосделка и др.), поэтому невозможно делать выводы о том, отражает ли керамика Сарая микроэлементные особенности глин всего этого региона или характеризует только окрестности этого памятника.

В настоящем проекте задействовано три образца краснолощеной керамики XIV в., найденных на одном из памятников на юго-восточном

пограничье русских земель — Никольском городище и селище в Тамбовской области, появившихся еще в XII в., но продолжавших существовать и впоследствии, в том числе в XIV в. (Андреев, 2013). Проведенные анализы показали, что два образца (№ 41, 43) относились к "болгарской" продукции, а один (№ 42) — к "сарайской".

В отдельную (пока ненумерованную) группу выделился обломок византийской амфоры (№ 44), принадлежавшей к изделиям XII—XIV вв., производившимся, как предполагается, на территории Трапезундской империи (Волков, 1992. С. 147; Коваль, 2010. С. 152—157).

Интересна третья группа образцов, объединившая в себе четыре фрагмента керамики, найденной на Селитренном городище (№ 18, 20, 22, 35), а также обломок поливного сфероконуса из раскопок в Болгаре (№ 16) и четыре образца, происходивших из совершенно разных стран: Хорезма, Афрасиаба, Шемахи и Испании (№ 38, 39, 40, 45). Близость столь разнородной керамики объясняется тем, что здесь оказались собраны единичные экземпляры из разных стран мира. Если бы их было проанализировано больше, то они, вероятно, тоже разделились бы на территориальные подгруппы.

Сложнее всего объяснить присутствие в этой группе четырех образцов керамики Селитренного городища, заметно отличающихся по микроэлементному составу от других проанализированных обломков с этого памятника и от покровных суглинков, на которых он стоит. При этом внешние отличия этих образцов от керамики Селитренного городища не замечены. Возможно, сосуды, к которым они относились, были изготовлены в каком-то ином производственном центре Нижнего Поволжья, характеристики керамики которого пока остаются неизвестными.

Тем не менее четкое разделение проанализированных образцов по территориям нельзя считать случайным. Оно, безусловно, связано с геологическими особенностями тех мест, откуда бралось глинистое сырье для производства керамики, т.е. с размещением их на территории разных геохимических провинций (Перельман, 1979). Однако данные по геохимии разных районов России и других стран не являются открытыми, поскольку непосредственно связаны с поиском полезных ископаемых и стратегически важных элементов. Возможности для сравнения получаемых данных по древней керамике с современными данными по геохимии ограниченны. Тем не менее некоторые сведения такого рода могут быть получены и уже публиковались, например, для территории Татарстана (Храмченкова, 2014. Табл. 7; Бахматова

и др., 2017. Табл. 2). Однако не стоит думать, что геохимия даст сразу все ответы на поставленные вопросы о происхождении древней керамики. Например, данные о составе глин, имеющиеся у геологов, можно применять к археологическим задачам с большой осторожностью. Дело в том, что в средневековье гончары использовали не столько глины, сколько покровные суглинки, залегавшие близко к поверхности земли (на глубине не более 5 м), которые не представляют интереса для современного промышленного производства и специально не изучались геохимиками (за исключением некоторых прикладных задач). Кроме того, запасы пригодного для гончарства сырья зачастую были исчерпаны еще в древности, а те покровные суглинки, на которых размещаются средневековые поселения, не всегда были пригодны для производства посуды.

В то же время все образцы "глины" (покровных суглинков), взятые в разных частях площадки Селитренного городища (в том числе и рядом с гончарными горнами), оказались в одной группе с керамикой этого памятника, т.е. по микроэлементному составу они в целом совпали с образцами местной керамики. Следовательно, даже в тех случаях, когда нет уверенности в том, что при производстве керамики применялся именно тот глинистый материал, который можно встретить на площади производственного центра, его можно привлекать для выявления, как минимум, региона происхождения керамики. Разумеется, этот тезис требует тщательной проверки в разных регионах.

Полученные результаты дают в руки исследователей еще один инструмент для различения керамики, произведенной в разных частях Восточной Европы. К сожалению, имеющаяся база данных, находящаяся в фазе накопления, не дает пока возможности для однозначного ответа на вопрос, какие именно микроэлементы (вернее, соотношение микроэлементов и уровень их содержания в глинах) формируют различия между разными территориями, однако по мере роста этой базы данных ответ на такой вопрос вполне может быть получен.

Авторы выражают глубокую благодарность к.и.н. С.А. Курочкиной, предоставившей образцы с Селитренного городища для исследования, а также С.И. Андрееву за предоставленный для изучения материал с Никольского городища.

СПИСОК ЛИТЕРАТУРЫ

Андреев С.И. Никольское городище. Тамбов: Тамбовский госуниверситет, 2013. 215 с.

- Бахматова В.Н., Храмченкова Р.Х., Ситдиков А.Г. Исследования керамики и источников глинистого сырья в керамическом производстве Среднего Поволжья XIII—XIV вв. // Поволжская археология. 2017. № 2. С. 126—146.
- *Васильева И.Н.* Гончарство Волжской Болгарии в X—XIV вв. Екатеринбург: Наука, 1993. 247 с.
- Волков И.В. О происхождении и эволюции некоторых типов средневековых амфор // Донские древности. Вып. 1. Азов: Азовский краевед. музей, 1992. С. 143—157.
- Коваль В.Ю. Керамика Востока на Руси. IX–XVII вв. М.: Наука, 2010. 269 с.
- Коваль В.Ю., Дмитриев А.Ю., Борзаков С.Б., Чепурченко О.Е., Филина Ю.Г., Смирнова В.С., Лобачев В.В., Чепурченко Н.Н., Булавин М.В. Керамика Болгара: Первые результаты применения нейтронного активационного анализа // Письма в журнал "Физика элементарных частиц и атомного ядра" (Письма в ЭЧАЯ). 2019. Т. 16. № 6 (225). С. 781–801.
- Перельман А.И. Геохимия. М.: Высшая школа, 1979. 423 с.
- Сайко Э.В. Глазури керамики Средней Азии VIII— XII вв. Душанбе: Акад. наук Таджикской ССР, 1963 (Труды Ин-та истории Акад. наук Таджикской ССР; 36). 137 с.
- Сайко Э.В. Среднеазиатская глазурованная керамика XII—XV вв. Душанбе: Дониш, 1969. 186 с.
- *Хлебникова Т.А.* Неполивная керамика Болгара // Город Болгар. Очерки ремесленной деятельности. М.: Наука, 1988. С. 7–102.
- *Храмченкова Р.Х.* Химический состав глин как индикатор сырьевого источника // Поволжская археология. 2014. № 2 (8). С. 176—204.
- Archaeometry. 2007. Vol. 49, iss. 2. Fifty Years of Neutron Activation Analysis in Archaeology. P. 179–420.
- Bulavin M., Kulikov S. Current experiments at the irradiation facility of the IBR-2 reactor // Journal of Physics. Conference Series. 2018. Vol. 1021. 012041. P. 1–4.
- Laser ablation ICP—MS in archaeological research / Eds. R.J. Speakman, H. Neff. Albuquerque: University of New Mexico Press, 2005. 200 p.
- *Quinn P.S.* Ceramic Petrography. The interpretation of archaeological pottery & related artefacts in thin section. Oxford: Archaeopress, 2013. 260 p.
- *Rice P.M.* Pottery Analysis. A Sourcebook. Chicago; London: The University of Ghicago Press, 1987. 559 p.
- *Tite M.S.* Methods of physical examination in archaeology. London; New York: Seminar press, 1972. 389 p.
- Waksman S.Y., Pape A., Heitz C. PIXE analysis of Byzantine ceramics // Nuclear Instruments and Methods. Physics Research. Section B: Beam Interactions with Materials and Atoms. 1994. Vol. 85. P. 824–829.

NEW RESEARCH OF ELEMENTAL COMPOSITION OF EAST EUROPEAN MEDIEVAL POTTERY

Vladimir Yu. Koval^{1,*}, Andrey Yu. Dmitriev^{2,**}, Veronika S. Smirnova^{2,***}, Olesya E. Chepurchenko^{2,****}, Yulia G. Filina^{2,*****}, Maksim V. Bulavin^{2,******}

¹Institute of Archaeology RAS, Moscow, Russia ²I.M. Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research, Dubna, Russia

*E-mail: kovaloka@mail.ru

**E-mail: andmitriev@jinr.ru

***E-mail: veronicasm@jinr.ru

****E-mail: yurchenko0907@mail.ru

****E-mail: jgfilina@yandex.ru

*****E-mail: bulavin85@inbox.ru

The paper presents the results of studying the composition of pottery by neutron activation analysis (involving X-ray fluorescence analysis). The study was based on samples of pottery made from highly ferrous (redburning) clays originating from archaeological sites investigated in the territory of medieval Rus (Moscow and Ryazan Land) and the Volga River region (the Bolgar and Selitrennoye fortified settlements). They were compared with pottery samples from Byzantium and other regions (the Caucasus, Central Asia). A set of trace elements was identified whose content varies significantly in the pottery of different regions of Eastern Europe and differs also from the pottery of neighbouring countries. Cluster analysis confirmed the presence of noticeable differences in the trace element composition of clay masses from which medieval pottery were made. The results obtained allow the authors to admit the possibility of determining the origin of pottery by its trace element composition, at least at the level of large territories. Within these territories, differences in the composition of pottery have not yet been revealed.

Keywords: archaeology, medieval pottery, neutron activation analysis, X-ray fluorescence analysis.

REFERENCES

- Andreev S.I., 2013. Nikol'skoe gorodishche [The Nikolskoye fortified settlement]. Tambov: Tambovskiy gosuniversitet. 215 p.
- Archaeometry, 2007, vol. 49, iss. 2. Fifty Years of Neutron Activation Analysis in Archaeology, pp. 179–420.
- Bakhmatova V.N., Khramchenkova R.Kh., Sitdikov A.G., 2017. Studies in pottery and sources of clay raw materials in pottery production of the Middle Volga region of the 13th-14th centuries. Povolzhskaya arkheologiya [The Volga River Region archaeology], 2, pp. 126-146. (In Russ.)
- Bulavin M., Kulikov S., 2018. Current experiments at the irradiation facility of the IBR-2 reactor. *Journal of Physics*. *Conference Series*, 1021, 012041.
- Khlebnikova T.A., 1988. Non-glazed pottery of Bolgar. Gorod Bolgar. Ocherki remeslennoy deyatel'nosti [The city of Bolgar. Studies in craft activities]. Moscow: Nauka, pp. 7–102. (In Russ.)
- Khramchenkova R.Kh., 2014. The chemical composition of clays as an indicator of a raw material source. *Povolzhskaya arkheologiya* [The Volga River Region archaeology], 2 (8), pp. 176–204. (In Russ.)

- *Koval' V.Yu.*, 2010. Keramika Vostoka na Rusi. IX–XVII vv. [Pottery from the Orient in Rus. The 9th–17th centuries]. Moscow: Nauka. 269 p.
- Koval' V.Yu., Dmitriev A.Yu., Borzakov S.B., Chepurchenko O.E., Filina Yu.G., Smirnova V.S., Lobachev V.V., Chepurchenko N.N., Bulavin M.V., 2019. Ceramics of Bolgar: first results of neutron activation analysis. Pis'ma v zhurnal "Fizika elementarnykh chastits i atomnogo yadra" [Physics of Elementary Particles and Atomic Nuclei, Letters], vol. 16, no. 6 (225), pp. 781–801. (In Russ.)
- Laser ablation ICP-MS in archaeological research. R.J. Speakman, H. Neff, eds. Albuquerque: University of New Mexico Press, 2005. 200 p.
- *Perel'man A.I.*, 1979. Geokhimiya [Geochemistry]. Moscow: Vysshaya shkola. 423 p.
- *Quinn P.S.*, 2013. Ceramic Petrography. The interpretation of archaeological pottery & related artefacts in thin section. Oxford: Archaeopress. 260 p.
- *Rice P.M.*, 1987. Pottery Analysis. A Sourcebook. Chicago; London: The University of Ghicago Press. 559 p.
- Sayko E.V., 1963. Glazuri keramiki Sredney Azii VIII—XII vv. [Pottery glazes from Central Asia of the 8th—12th centuries]. Dushanbe: Akademiya nauk Tadzhikskoy SSR [Proceedings of the Academy of Sciences of the Tajik SSR]. 137 p. (Trudy Instituta istorii Akademii nauk Tadzhikskoy SSR, XXXVI).

- Sayko E.V., 1969. Sredneaziatskaya glazurovannaya keramika XII–XV vv. [Central Asian glazed pottery of the 12th–15th centuries]. Dushanbe: Donish. 186 p.
- *Tite M.S.*, 1972. Methods of physical examination in archaeology. London; New York: Seminar press. 389 p.
- Vasil'eva I.N., 1993. Goncharstvo Volzhskoy Bolgarii v X—XIV vv. [Pottery-making of Volga Bulgaria in the 10th—14th centuries]. Ekaterinburg: Nauka. 247 p.
- Volkov I.V., 1992. On the origin and evolution of some types of medieval amphorae. Donskie drevnosti [Antiquities of the Don River], 1. Azov: Azovskiy kraevedcheskiy muzey, pp. 143–157. (In Russ.)
- Waksman S.Y., Pape A., Heitz C., 1994. PIXE analysis of Byzantine ceramics. Nuclear Instruments and Methods. Physics Research. Section B: Beam Interactions with Materials and Atoms, 85, pp. 824–829.